VLSI Design courses are designed to provide students with sufficient hands on experience with VLSI design tools and to provide industry exposure for future career selection in VLSI industry. This total six months PG Diploma course offers 26 weeks of theory with practical and hands on industry standard EDA tools.

Course Structure for Three Months Certificate Course

Module 1. ASIC Design

- Different Technology Options
- ASIC styles
- ASIC Design Flow
- Design Flow (Design Specification, Verification Plan, RTL Description, Functional Verification, Synthesis)
- Power Calculations
- Clock Methodologies

Module 2. Digital Design Module

- Combinatorial Logic Design
- Sequential Logic Design
- State Machines
- Advanced Design Issues: Metastability, Noise Margins, Power, Fan-out, Timing Consideration

References- Digital Design Principles and Practice by John F. Wakerly.

Digital Design by M. Morris Mano, Michael D. Ciletti

Module 3. Hardware Design Language Module And Synthesis

VHDL- Introduction to HDL

VHDL Flow

Language Constructs

Concurrent Constructs

Sequential Constructs

Subprogram

Packaging

Timing Issues

The Concept of Simulation and Synthesis

State Machine Synthesis

Efficient Coding Styles

Verilog HDL- Data Types

Modelling Concepts

Task and Functions

Specify Block and Timing Checks
Verification and Writing Test Benches

References- VHDL: Programming by Douglas L. Perry

A VHDL primer by Jayaram Bhasker

Verilog HDL (paperback) by Samir Palnitkar

Advanced ASIC chip synthesis by Himanshu Bhatnagar

Course Structure for Six Months PG Diploma in VLSI Design

Module 4. MOS Fundamentals

- MOSFET channel length modulation
- Small signal model, AC equivalent circuit
- T model
- Biasing a MOSFET at DC
- Modelling body effect
- Short channel effects

References- Solid State Electronic Devices by Ben G. Streetman

Device Electronics For Integrated Circuit by Richard S. Muller VLSI design Technique for Analog and digital circuit by Randell Geiger

Module 5. CMOS Subsystem Design module

- System
- VLSI design flow
- Structured design approach
- Architectural issues
- Circuit Families

Restoring Logic: CMOS and its variants - NMOS and Bi CMOS

Other circuit variants

NMOS gates with depletion (zero -threshold) pull up

Bi-CMOS gates

- Switch logic: Pass Transistor and Transmission gate (TG)
- Examples of Structured Design

MUX

DMUX

D Latch and Flop

A general logic function block

Reference- Digital Integrated Circuits- A Design Perspective by Jan M. Rabaey,

Anantha Chandrakasan, and Borivoje Nikolic

CMOS Logic Circuit Design by John P. Uyemura

Module 6. Analog CMOS IC module

- Review of MOSFET Device Models
- Review of BJT Device Models
- Self-reading IC Technology
- Differential Amplifiers
- Current Mirrors
- Opamp Design
- Frequency Response
- Stability and Compensation
- Two-stage Amplifier

Reference- Design of Analog CMOS IC by Behzad Razavi Analog Design Essential by Willy M.C. Sansen